

An Overview of Capabilities at the NIST Center for Neutron Research

Juscelino B. Leão
7th International Workshop on
Sample Environment at Neutron Facilities
Sydney, Australia

- The Tool Belt
- The Right Tool for the Right Job
- News
- Planning
- Safety vs. Results
- R&D

The Tool Belt

http://www.ncnr.nist.gov/equipment/ancequip.html

The Right Tool for the Right Job

What is important? At what instrument?

Data Acquisition Time

Accuracy and Precision

Simultaneous Multi-Techniques

http://www.ncnr.nist.gov/equipment/ancequip.html

v Fr e

News

wide Fridge endat 11.5 T we

ma gn

Navly commissioned SAN

nty of v

Planning

Prior

Preparation

Prevents

Poor

Performance

- Preparation
- Submission
- Review
 - ✓ Scientific national & international experts
 - ✓ Technical & Safety Review (S.E.)
 - ✓ Proposal Assessment Committee (PAC)
- Scheduling
 - ✓ User Office
 - ✓ Instrument Scientists
- > Arrival
- Completion
- Customer feedback

(S.E. consultation)

(S.E. consultation) (24 Hrs. prior)

http://www.ncnr.nist.gov/

Reality

Preparation

(S.E. consultation)

- Submission
- > Review
 - ✓ Scientific national & international experts
 - ✓ Technical & Safety Review (BYO S.E or n/a)
 - ✓ PAC (Proposal Calls for Ambient Conditions)
- > Scheduling

SE GROUP IS RELIEVED

- ✓ User Office
- ✓ Instrument Scientists
- Arrival

- (S.E. censuitation)
- (Day of experiment)
- (Parameters changed)
- SE scrambles to meet demand

- Completion
- Customer feedback

@!%!**#~@#!! SE Group

http://www.ncnr.nist.gov/

Safety vs. Results

Stick to the plan

In doubt ask

Slow down and be vigilant

Know your sample

Yes! My sample IS dry!

³He Polarization

³He program for scattering applications SEOP lab

Currently available for 3-axis, reflectometry, and SANS

≈ 20 experiments/year

Computer Controlled Gas Handling Manifold

Pressures up to 200 bar

Resolution: 0.01% of F.S.

Accuracy: ±1% Reading

Flow restrictors to prevent gauge saturation, vacuum pump

Intrinsically safe wiring

Explosion proof enclosure, gauges and valves

Sample volume protected via expansion volume

Easy pull-down menus
Supports scripting for remote beam line experiments
Works either as a stand-alone program or in the
background controlled by ICP
Expandable

Software Screen Shot

Multi-stage SAmple Changer

Prototype:

6 Samples

 $253 \text{ K} \le \text{T} \le 393 \text{ K}$

 $t_{\Delta T=100K}: 1 \text{ min.} (0.25 \text{ K acc.})$

: 5 *min*. (0.1 *K acc*.)

Thermoelectric module

Torlon vrs PTFE:

Thermal Conductivity 0.250 W/m-K Deflection Temperature at 1.8 Mpa

PTFE: 93.3 °C Torlon: 278 °C

SANS Rheometers

MCR 501

Rheology

Couette Geometry

Cone-Plate/Plate-Plate

Torque Ranges

MCR501: $0.1 \mu Nm - 230 mNm$

MCR301: $0.1 \mu Nm - 200 mNm$

Shear Stress: 0.5 mPa – 5.5 MPa

RheoSANS

Couette Geometry

1,3 and 2,3 planes

Cups and Bobs from Titanium and Quartz

Static SANS Cell

Time Resolved Measurements

Sample Cans

http://www.ncnr.nist.gov/equipment/ancequip.html

SANS Gas Adsorption $P_{max} = 1{,}000 \; bar$ $LN_2 < T < 350K$ Beam divergence angle $\theta \approx 20^{\circ}$

Air sensitive/gas loading $P_{max} = 5 \text{ bar (V)}$ $4 \text{ K} \le T \le 800 \text{ K}$ Heated gas line available for methane and CO_2